CULTIVATING EXPERT SOFTWARE DESIGN DECISION-MAKING
OVERVIEW

- Introduction
- Background
- Research Approach
- Results
- Conclusions
- Future Work
INTRODUCTION

- What is Design?
The fundamental problem is that designers are obliged to use current information to predict a future state that will not come about unless their predictions are correct. The final outcome of designing has to be assumed before the means of achieving it can be explored: the designers have to work backwards in time from an assumed effect upon the world to the beginning of a chain of events that will bring the effect about.

LEARNING TO DESIGN

- Problems students face are usually
 + Compact
 + Well-formed
 + Limited number of solutions

- Real-world problems are
 + Large and complex
 + Ill-formed and poorly defined
 + Many possible solutions
SOLUTION INSIGHT

- Architecture deals with complex systems
 - Complexity within a structure
 - Complexity in a building’s environment
 - Complexity in the structure’s use

- Software systems are complex systems
 - Heterogeneous elements must work together
 - Computing environments are dynamic
 - Software is used by people
PROBLEM & SOLUTION

- Industry needs great software designers
- Students need help to learn how to think like expert designers
- Current approaches do not generally meet this need
- Principles, Patterns, and Process Framework (P^3F) can meet this need
BACKGROUND

- Expert Design Strategies
- Overview of the P^3F
EXPERT DESIGN STRATEGIES

- Maintain a view of the whole system
- Opportunistic navigation of the design problem/solution space
- Confident and grounded decision-making
SYSTEM VIEW

- Maintain the “big picture”
 - Problem & solution co-evolve
 - Problem & solution exist in some context or environment

- Abstractions & metaphors
 - Label previously solved problems
 - Placeholders for partially defined elements
 - Simplified models promote deeper understanding
OPPORTUNISTIC NAVIGATION

- High tolerance for uncertainty & ambiguity
- Able to “chunk” aspects or perspectives for closer attention
- Problem setting
 - Framed within a defined boundary
 - Can be expanded or contracted as needed
 - Can be reoriented or redefined
CONFIDENT DECISION-MAKING

- Background and domain knowledge
 - Important for problem-framing & structuring
 - Less important for actual design decision-making
- “First principles”
 - Strong basis for decision-making
 - Proven theories, formulas, etc.
 - Fundamental design principles
THE PRINCIPLES, PATTERNS, & PROCESS FRAMEWORK

- Principles
- Patterns
- Process
- The Decision Pattern
Alexander’s 15 properties of living structures
- Properties are observable attributes or qualities
- Transformations are active processes that generate these attributes
- Metaphors for visual, structural, and dynamic characteristics

Principles:
- Determining characteristic of something
- Fundamental, primary, or general law or truth
- Originating or actuating agency or force
- Rules for creating structure
- Define relationships between structures
- Chunk information under a metaphorical name
- Design Principles Pattern Language
 + Expresses & documents 15 fundamental design principles
 + Provides contextual & relational information
 + Abstract structure is a navigational aid
Alexander’s *Fundamental Differentiating Process*

- Template for identifying and iterating over design decision sequences
- Allows structure and behavior to unfold as a coherent whole
- Helps ensure solution is smoothly integrated with environment

- Whole system view is refreshed at each iteration
- Current state of system is evaluated based on design principles
- Identifies part of system needing attention next
THE DECISION PATTERN

- Documents design decisions
- Abstracts & structures key decision elements
 - Problem
 - Forces & counter forces
 - Context
 - Solution
 - Rationale
- Represents transformation moving problem closer to solution
- Supports reflection and back-tracking
RESEARCH APPROACH

- Subjects
 - Advanced undergraduate students
 - Graduate students

- Study Protocol
 - Initial design problem
 - Introduction to P^3F
 - Second design problem
RESEARCH APPROACH

- Data Collection
 - Artifacts from design problem solutions
 - Journals of work performed to solve problems
 - Decision Pattern use required for second problem

- Journal Coding
 - Decision Type
 - Decision Perspective
 - Basis or justification
RESEARCH APPROACH

- Coding Analysis
 - Sequences of design decisions identified larger-scale behaviors
 - Linear decomposition
 - Opportunistic differentiation
 - Fixation on a particular solution
 - Reliance on personal experience
 - Meta-coding compares with existing models of novice & expert design behavior
RESULTS

Study Goals

- Would students use the P^3F?
- Identify behavior changes resulting from use of the P^3F

Study Sample

- 38 students (out of 46) completed both assignments
- 29 determined to be usable
 - Completeness
 - Lack of backfill
 - Correlation to artifacts
Identified Novice Design Behaviors

<table>
<thead>
<tr>
<th>System View</th>
<th>Problem 1</th>
<th>Problem 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow Focus</td>
<td>G:13, U:10</td>
<td>G:8, U:1</td>
</tr>
<tr>
<td>Fit problem to solution</td>
<td>G:7, U:8</td>
<td>G:4, U:2</td>
</tr>
<tr>
<td>Early concretization</td>
<td>G:8, U:11</td>
<td>G:6, U:3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Navigation</th>
<th>Problem 1</th>
<th>Problem 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear search</td>
<td>G:9, U:11</td>
<td>G:7, U:5</td>
</tr>
<tr>
<td>Single solution considered</td>
<td>G:4, U:9</td>
<td>G:3, U:2</td>
</tr>
<tr>
<td>Weak relationships</td>
<td>G:14, U:12</td>
<td>G:7, U:3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decision Making</th>
<th>Problem 1</th>
<th>Problem 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak justification</td>
<td>G:15, U:10</td>
<td>G:2, U:4</td>
</tr>
<tr>
<td>Personal experience</td>
<td>G:13, U:10</td>
<td>G:7, U:2</td>
</tr>
<tr>
<td>Use of buzzwords</td>
<td>G:5, U:9</td>
<td>G:1, U:0</td>
</tr>
<tr>
<td>Identification Expert Design Behaviors</td>
<td>Problem 1</td>
<td>Problem 2</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>System View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintains system view</td>
<td>G:2, U:1</td>
<td>G:13, U:10</td>
</tr>
<tr>
<td>Problem framing</td>
<td>G:5, U:1</td>
<td>G:16, U:10</td>
</tr>
<tr>
<td>Use of abstraction</td>
<td>G:12, U:3</td>
<td>G:14, U:6</td>
</tr>
<tr>
<td>Navigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opportunistic search</td>
<td>G:1, U:1</td>
<td>G:15, U:11</td>
</tr>
<tr>
<td>Alternative generation</td>
<td>G:5, U:2</td>
<td>G:10, U:8</td>
</tr>
<tr>
<td>Tolerance for ambiguity</td>
<td>G:9, U:1</td>
<td>G:13, U:4</td>
</tr>
<tr>
<td>Decision Making</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formal analysis</td>
<td>G:11, U:0</td>
<td>G:10, U:2</td>
</tr>
<tr>
<td>Confidence</td>
<td>G:6, U:7</td>
<td>G:16, U:12</td>
</tr>
</tbody>
</table>
DISCUSSION OF RESULTS

- Decline in novice design behaviors when using P^3F
- Increase in expert design behaviors after P^3F introduction
- Most important increases
 - Maintaining system view
 - Problem framing
 - Opportunistic navigation
STUDY LIMITATIONS

- Extrapolations to other learning environments may not be applicable
- Results may not reflect long-term learning
- Only one problem type solved
- Journal data potentially incomplete, inaccurate, biased, and is self-reported
- Quality of design artifacts not considered for this study
CONCLUSIONS

- Would students use the P^3F?
 - Results indicate subjects developed some understanding of the P^3F
 - Subjects were also able to apply the P^3F to a design problem

- Would use of the P^3F cause a change in design behavior?
 - Novice behaviors reduced
 - Expert behaviors increased