Module – 4 Mechanics of Materials

- Torsion
 - shear stress,
 - angular twist
- Columns
 - Euler’s formula
- Elastic Strain Energy
 - Uniaxial loading
The steel shaft shown is subjected to a twisting torque T. Find the largest value of T such that the maximum shear stress will not exceed 100 MPa and total twist will not be greater than 4 degrees. Choose an answer from those listed closest to the actual value. $G = 8.27 \times 10^4$ MPa

(A) 299 Nm (B) 300 Nm (C) 400 Nm (D) 500 Nm
Problem 22 – Stepped Shaft

A stepped shaft fixed to a wall is loaded with two applied torques. T_1 has a magnitude of 100 Nm and T_2 is 500 Nm in the opposite direction applied at the left end of section 2. Determine the ratio of the diameter of section 2 to section 1 so the maximum shear stress in both sections is equal.

(A) 1.2 (B) 1.4 (C) 1.6 (D) 1.8
A 45 cm long section of copper tubing is subjected to a torque of 40 Nm. The inside diameter is 16 cm and the wall thickness is 3 mm. Determine the resulting total twist in degrees.

\(G = 45 \text{ GPa} \)

(A) 0.02 deg (B) 0.04 deg (C) 0.4 deg (D) 4deg
Problem 24 – Column Design

Determine the minimum safe diameter for the solid Aluminum member CD in the system shown to prevent buckling by a safety factor of 3. The column is pinned at C and fixed at D. $E = 72 \text{ GPa}$.

(A) 8 cm (B) 9 cm (C) 10 cm (D) 11 cm
Problem 25 – Tension Strain Energy

A circular steel rod in tension is subjected to a tensile load P of 1500 N. For the dimensions given in the figure calculate the strain energy stored in the rod due to the work done by the force P. $E = 200$ GPa

(A) 1.2 Nm (B) 0.62 Nm (C) 0.12 Nm (D) 0.062 Nm
Problem 26 – Bending Strain Energy

Determine the bending strain energy stored in the cantilever beam in Problem 20 by the work of the concentrated end load P.

(A) 1.2 Nm (B) 0.62 Nm (C) 0.12 Nm (D) 0.062 Nm
Thanks for watching and

GOOD LUCK!

on the exam!